Az első év eredményei alapján sikeresnek a MATE és a TERRA-COOP Termelő és Szolgáltató Korlátolt Felelősségű Társaság konzorciumi formában megvalósuló, „Szántóföldi növénytermesztés permetezési hatékonyságának növelése, a növényi növekedési periódusok konvolúciós neurális hálózat alkalmazásával történő felismerésével” – című projektje az egyetem közleménye szerint. 

A Nemzeti Kutatási, Fejlesztési és Innovációs Hivatalhoz benyújtott 2022-1.2.2-TÉT-IPARI-UZ-2022-00010 azonosítószámú támogatási kérelmet a Kulturális és Innovációs Minisztérium a 2022.12.8-án hozott döntése értelmében 63 204 248 forint összegű támogatásra érdemesnek ítélte - írta a MATE. 

Halad a „Szántóföldi növénytermesztés permetezési hatékonyságának növelése, a növényi növekedési periódusok konvolúciós neurális hálózat alkalmazásával történő felismerésével” – című közös MATE és TERRA-COOP projekt.
Halad a „Szántóföldi növénytermesztés permetezési hatékonyságának növelése, a növényi növekedési periódusok konvolúciós neurális hálózat alkalmazásával történő felismerésével” – című közös MATE és TERRA-COOP projekt

A projekt célja egy neurális hálózat alapú képfelismerési algoritmus fejlesztése, amely a növények növekedési fázisainak pontos azonosítását teszi lehetővé. Ezzel növelhető a permetezési hatékonyság, mivel a növényvédő szerek a legoptimálisabb időpontban kerülhetnek kijuttatásra. A szoftver a gyapot növekedési fázisain kerül tesztelésre, és képes lesz költséghatékony permetezési megoldásokat kínálni. A végleges modul szigetszerűen vagy vállalatirányítási rendszerekbe integrálva alkalmazható a permetezési folyamatok monitorozására és optimalizálására.

A projektmegvalósítás első évét követően az alábbiakról számoltak be:

Az elmúlt év során a projekt keretében jelentős előrelépések történtek, amelyek alapvetően a gyapotnövény növekedési fázisainak precíz azonosítását, valamint a permetezési hatékonyság javítását célozták. A legfontosabb eredmények közé tartozik, hogy sikerült meghatározni a gyapotnövény négy (palánta szakasz, bimbós szakasz, gyapottok szakasz, toknyílási szakasz) a permetezés szempontjából kritikus növekedési fázisát. Ezek a fázisok kulcsfontosságúak a precíziós gazdálkodásban, hiszen a megfelelő permetezési időpontok pontos beazonosításával a növényvédő szerek alkalmazása optimalizálható, ami nemcsak a növények védelmét javítja, hanem a költségeket is csökkenti. 

Az optimális időzítés eléréséhez a fázisok pontos feltérképezése elengedhetetlen, és ez a folyamat a projekt során sikeresen lezajlott. Továbbá a konvolúciós neurális hálózat struktúrája is kidolgozásra került, amely a projekt technológiai gerincét képezi. Ez a neurális hálózat képes lesz dinamikusan felismerni a gyapotnövény különböző növekedési fázisait a beérkező képadatok alapján, így támogatva a permetezési műveletek pontos időzítését. 

A hálózat struktúrájának megtervezése során kiemelt figyelmet fordítottunk a nagy mennyiségű adat hatékony feldolgozására és az azonosítás pontosságára, mivel ezek a tényezők közvetlenül befolyásolják a precíziós mezőgazdasági rendszerek hatékonyságát - fogalmaztak.

Az adatgyűjtés is folyamatban van, amely során meghatározásra kerültek a neurális hálózat taníttatásához szükséges képparaméterek. Az adatbázist is kiépítették, amely kifejezetten a képek tárolására szolgál. Ez a struktúra biztosítja a nagy mennyiségű képanyag kezelését és rendszerezését. Az adatgyűjtés a gyapotnövény négy növekedési fázisára terjedt ki, és három szakasz esetében már befejeződött a képek összegyűjtése. A negyedik szakasz adatgyűjtése még folyamatban van, de várhatóan hamarosan lezárul. Ezek az adatok alapvető fontosságúak a neurális hálózat tanításához, hiszen lehetővé teszik a hálózat számára, hogy megtanulja az egyes növekedési fázisok pontos azonosítását a valós környezetben. 

Ezzel párhuzamosan a permetezési költségkategóriák részletes elkülönítése is megtörtént, ami előkészítette a költséghatékony permetezési módszerek kidolgozását. A különböző költségtényezők részletes elemzésének eredményeként megkezdődött egy költségkalkulációs modell fejlesztése - írták.

A modell fontossága

Ez a modell a projekt során fejlesztett szoftver egyik kulcsfontosságú moduljává válik, mivel képes lesz valós időben figyelni és előrejelezni a permetezési folyamat költségeit, valamint optimalizálni azokat a termelői igényekhez igazítva. Emellett a szoftverfejlesztés alapjait is lefektették, különös tekintettel a neurális hálózat rendszerintegrációjára való fókusszal. A tevékenységeket jelentős mértékben elősegítette a vállalati partnerrel való szoros szakmai együttműködés, amely az év során rendszeres konzultációk formájában valósult meg. 

A szakmai tanácsadás során nemcsak a gyapottermesztés specifikus szakmai kérdéseiben, hanem a precíziós gazdálkodás alapjainak gyakorlati szempontú alkalmazásában is jelentős támogatást nyújtottak. A vállalati partner szakértelme hozzájárult költségkalkulációs modell gyakorlati fejlesztéséhez, valamint az adatgyűjtés, a növénytermesztési szempontok és a rendszerfejlesztés különböző tevékenységeihez is.

A jövő kihívásai és feladatai

A következő évben a projekt során több fontos feladat megvalósítása várható, amelyek a gyapottermesztéssel kapcsolatos kutatások folytatására és a permetezési hatékonyság javítására irányulnak. Folytatódnak az üzbég fél által biztosított kísérleti állomány elemzései, amelyek célja, hogy még pontosabban definiálják a növekedési szakaszokra jellemző jeleket. 

A következő mérföldkő eléréséig a neurális hálózatnak meg kell felelnie a minimum 95%-os megbízhatósági szintnek, amely a piac elvárásainak is megfelel. A tanulási fázis befejeztével a tesztelési szakasz során többször megismétlik a megbízhatósági szint érvényességének ellenőrzését. Amennyiben az eredményeket elfogadják, a neurális hálózat tanítási szakasza lezárul, de az adatgyűjtés folyamatos marad az előre definiált struktúra szerint, hogy a rendszer informatikai fejlesztése és tesztelése is folytatódhasson.

A permetezési hatékonyság és költségek értékelésére a fuzzy logikán alapuló algoritmus konceptuális megalkotása is a következő mérföldkőig elkészül. Az informatikai fejlesztések során a képfelismerő neurális hálózat mellett integrálják ezt a fuzzy logikán alapuló értékelő függvényt is - közölték.

A következő mérföldkő végére elkészül a permetezési hatékonyságot és költségeket értékelő végleges függvény, valamint a betanított neurális hálózat. Ezzel párhuzamosan a két rendszer informatikai integrációja is megtörténik, és megkezdődik a felhasználói felület fejlesztése. Az újonnan létrehozott kontrollrendszer és automatikus diagnosztizáló rendszer tesztelése szintén megtörténik - zárult a közlemény.

Megosztás

Kapcsolódó cikkek

További híreink

Több, mint 10 milliárd forintot fizettek ki a Napenergia plusz programban

2024.11.21.

Az Energiaügyi Minisztérium szerint mintegy 4000 pályázónak már több mint 10 milliárd forintot utaltak át a modern napelemes rendszerek telepítéséhez

Naponta méhek millióinak gyilkosa az autó

2024.11.21.

Egy friss kutatás meglepő eredményeket hozott a méhek közlekedési forgalom miatti pusztulásáról, amely jóval nagyobb léptékű, mint azt korábban feltételezték.

Kemény mínuszok és havazás lesz ma

2024.11.21.

Csütörtökön változóan felhős, napos idő várható, de estére délnyugatról vastag felhőzet érkezik, és nyugaton havas eső, havazás alakulhat ki, erős, néhol viharos széllel.

Van válasz a veszteséges tejtermelésre: Szilágyi Szabina mesélt a Bociország Sajtműhely munkájáról

2024.11.21.

A szarvasmarhatartás korántsem egyszerű feladat, amit Szilágyi Szabina gyakorló gazdálkodó alapos gazdasági számításokkal támasztott alá.

Kritikus állapotban az intenzív osztályon van a tinédzser, akit madárinfluenza fertőzött meg

2024.11.20.

Egy kanadai tinédzser kritikus állapotban, intenzív osztályon fekszik, miután H5N1 madárinfluenzával fertőződött meg november elején.

Hérics: mérgező szépség vagy értékes vadvirág?

2024.11.20.

A hérics, ez a különleges és szemet gyönyörködtető vadvirág, számos érdekességet rejt mind nevében, mind természetes élőhelyében.

Partnerhírek
Partner

Baromfi Mintatelep és Látogatóközpont: az Agrofeed új mérföldköve a fenntartható állattenyésztésben

2024.11.19.

Az Agrofeed Kft. nagy hangsúlyt fektet olyan mintatelepek létrehozására, amelyeken az elvégzett etetési tesztek tapasztalatai alapján hatékonyabb takarmányt tud a partnerei számára ajánlani.

Partner

Útmutató a talajmintavételhez, mésztrágyázáshoz és a meszezéshez

2024.11.07.

Most, a tavaszi vetések betakarítása és az őszi vetések befejezése után ráérősen foglalkozhatunk két, a növénytermesztés hatékonyságát megalapozó, mégis méltatlanul elhanyagolt kérdéssel, illetve azok gyakorlati megvalósíthatóságával. Az egyik a talajmintavétel, a másik a mésztrágyázás és meszezés kérdésköre.

Hirdessen a Magro.hu oldalon!

Válasszon prémium megjelenési megoldásaink közül!

Médiaajánlat

Magro.hu Piactér

Több mint 3.100 hirdetés 88 kategóriában!

Megnézem a hirdetéseket
Hirdetésfeladás